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Bound-state method with elementary-product 
wavefmctions 

M Znojil 
tktav jadem6 fyziky AV CR, 250 68 keZ U Prahy, Czech Republic 

Received 16 June 1995 

Abstract. We propose a new version of the multipoint Pad6 lechnique to solve Schradinger 
equations in their first-order Riccati form. Our compact product representation of wavefunctions 
interpolates or ‘matches’ available approximants at several points. The mechanism of ‘matching’ 
determines the energies and eliminates spurious solutions.;On V ( x )  = K’X’ +Ax2/(1 + p x 2 ) ,  
its efficiency is illustrated numerically. 

1. Introduction 

In applied quantum mechanics, realistic calculations often rely on sophisticated variational 
constructions with non-orthogonal bases {In)}. One-dimensional and/or central-symmetric 
models and Hamiltonians H = -(fiZ/2m)A + V ( r )  with power-series wavefunctions 

m 

p~) = 1 a, In) {rln) = rn exp[-w(r)l (1) 
n 4 0  

are recalled as a guide. With a suitable w(r) ,  they not only reproduce the well known 
special-function solutions [ 11, but they also remain applicable to the majority of the ‘next- 
to-solvable’ polynomial interactions 

(2) 
The lack of orthogonality of In) (equation (1)) makes the direct calculation of the physical 
bound-state energies E a little bit tedious. One may employ a purely numerical matching 
of the ansatz Y ( r )  to its correct asymptotics [2]  (the physics remains clearly represented by 
the standard boundary conditions) as well as a more algebraic Hill determinant method [3]. 
Unfortunately, serious difficulties may arise for the very next, non-polynomially generalized 
class of forces (2). 

V ( r )  = a  + br2 + cr4  +. . . + z r Z p .  

a + br2  + c r 4  + . . . +zr2p  
A f B r Z +  C r 4 + .  . . + Z r Z P  

V(r )  = (3) 

due to the influence of the complex poles on the analytic properties of Y ( r )  141. At the 
same time, the choice of exponents w(r )  in In) remains virtually arbitrary and plays just an 
auxiliary role [5]. 

An improvement of w(r )  [6] or even a full replacement of wavefunctions Y (r)  by their 
(negative) logarithmic derivatives F ( r )  = - Y ’ ( r ) / q ( r )  (well motivated numerically [7]) 
seems to be a promising alternative method. In a way suggested recently by Femhdez 
et ul [SI, the particularly useful form of transition Y ( r )  -f- F(x)  may be based on, or 
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6266 M Znojil 

combined with, the standard Pad6 approximation [9]. Numerically, such an approach 
(Riccati-Pad6 method, RpM) proved fully capable of competing with other and specialized 
numerical algorithms [lo]. In a non-numerical setting, the direct use of F(r) simplifies, 
e.g. the analysis and construction of particular (so-called quasi-exact) elementary bound- 
state solutions (cf [ 111) as well as of perturbation expansions (cf [ 121 for a good illustration). 
Here, we shall study and develop the RPM idea further. 

In sections 2 and 3, we shall emphasize non-numerical aspects of the RPM constructions 
and restrict our attention to wavefunctions. Energy E will be treated as a mere external 
parameter. Having the general class of forces (3) in mind, section 2 will pay attention 
to the transition from the ordinary linear Schrodinger equation for Y(r) to its equivalent 
nonlinear Riccati rearrangement for F(r)  and vice versa. The closed-formula character of 
these transformations will be stressed, assigning a product form to the wavefunction Y(r) 
in a way which reflects the partial-fraction re-summation of the functions F(r ) .  

Section 3 will develop the construction of Y(r )  in more detail. ‘Teaching by’ the 
simplest p = 2 and P = 1 example, it will display the recurrent power-series structure of 
F(r) .  Next, it will re-recommend (cf [lo]) the two-point Pad6 interpolation between the 
threshold and asymptotic wKB-like approximations. Finally, it will also introduce a brand 
new idea of matching the (easily determined) complex-plane singularities (if any) via a (in 
practice, simpler!) multi-point Pad6 fit. 

The consistent numerical determination of energies will be studied in the second part 
of the paper (section 4). In subsection 4.1, we re-derive the old (one-point, extrapolative 
cf [8] and two-point, interpolative, cf [lo]) RPM recipes, and describe their new, multi- 
point (explicitly three-point) Pad6 descendants. The (rather extensive family of) possible 
secular equations will be numbered by their dimension, by the number of the incorporated 
‘boundary conditions’ and, finally, by an auxiliary set of ‘weights’ of the separate ‘boundary 
conditions’ (here an integer parameter J ) .  

As long as one of the main obstacles of a broader applicability of the (otherwise: fairly 
universal and marvellously convergent) older numerical RPM prescriptiom [8, 121 seems 
related to occurrence of numerous redundant energy approximants, subsections 4.2 and 4.3 
will pay more attention to their elimination. We conjecture and test a new algorithm which 
employs the variability of J (in practice, from - 1 up to approximately half of its maximal 
permissible value) for such a purpose. The key importance of the resulting suppression of 
ambiguities and selection of the optima and reliable approximants is re-emphasized in the 
summary (section 5). 

2. Wavefunctions 

In accord with the numerous studies initiated by the work of Darboux [13], a switch 
from wavefunctions Y ( r )  to their neg&e logarithmic derivatives F(r) = -Y‘(r)/Y(T) 
proves useful for a coordinate-dependent analysis of scattering [ 141, as a complement to 
the textbook RayleighSchrodinger perturbation theory [I51 and also in the supersymmetric 
quantum mechanics [16]. Here, we intend to describe several further merits of the related 
exponential-plus-integral reparametrization 

of the bound-state wavefunctions. 
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2.1. The descriptive properties of F(r) 

The emergence of a nodal zero in the wavefunction Y ( r )  = (r - rz)Yo(r) at a real r, 
induces a pole in the logarithmic derivative, -F(r )  = -Fo(r) + l / ( r  - rz). Near this pole, 
the return from F(r)  to V(r )  must be performed carefully: at r > r,, the term l/(r - r2) 
emerges as the first derivative of In(r - rL), but the same term is also equal to the first 
derivative of In(r, - r )  at r < r,. With integration (4) defined in the sense of the Cauchy 
principal value, an incorrect wavefunction would result, !If@) = [(r -rz)[Vo(r). Vice versa, 
we obtain correct wavefunctions once we fix, say, qoi > r,, shift r, slightly off the real 
axis, r, + r, - is, and use the definition 

in the limit E 

The feasibility of the closed-form integration is an important merit of such a construction. 
It extends to all the Pad6 approximated F(r) and reconstructed Y(r ) .  Indeed, whenever we 
expand 

O+ (cf [l], p 177, equation (7.7)). 

in the sum of partial elementary fractions (plus powers if any), 
~ l M i . M s l ( ~ )  = zrM,-M, + r M ~ - M 2 - I  + . , . 

(7) 

(1171, section 1.7-4), all the integrals in (4) remain expressible in closed form. Besides the 
trivial integrations of powers r" and of the above-mentioned m(k) = 1 case, the rule 

1 Ck.m(k) 

(r - rk)m*) +...+ ck.2 +?[- + (r - r k ) z  

m > l  (8) 
1 r d x  s (x - rk)m (m - 1)(r - r#--I 

applies in general ([17], section 4.6-6). Finally, having the exponent F(r )  defined in 
the form of a sum (of logarithms and the like), it makes sense to simplify and rewrite 
wavefunction Y ( r )  as a product. In the exact limit M I  --t 03. MI -+ M, both the partial 
fraction sums in F(r)  and products in Y(r )  become infinite. 

= constant - 

2.2. The threshold and asymptotic approximations 

Assume that V ( r )  are not too singular (i.e. whenever lim,,orZ V(r) -$) and replace 
angular momenta I = 0,1, . . . , by the real parameters t = L ( l )  defined by the quadratic 
equation 

!(e + 1) = [ ( I  + 1) + Iim rz  v(r) 

* ( T O )  % r;+' lrol << 1.. (10) 

Y(r,) 4 exp (-;rL) 

Re(t) > -4 . (9) 130 

Then, we may postulate the threshold boundary condition in the simple form [ l ]  

Among all the corresponding regular Y(r) ,  correct physical bound states become selected 
by the second, asymptotic boundary condition. We may write it in the explicit form 

(11) 
!J 

Ir,l>> 1 

whenever limr3m rZ-& V ( r )  = pz i co at some suitable s. 
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In accord with standard textbooks [Z], the Schrodinger equation 

Y ( r )  + V ( r ) Y ( r )  = E Y ( r )  - W ( r )  + - 
may be rewritten as an equivalent nonlinear, first-order Riccati differential equation 

r ( -  Irl) E (0, m) (12) 
e(e + 1) 

r2 

+ V ( r ) - E = O .  (13) F'(r) - Fz(r)  + - 
Expanding the denominator of V ( r )  (equation (3)) in a geometric series, we may recall the 
standard power-series philosophy and postulate, near the threshold, 

e(e + 1) 
.r2 

m 

I=jo  

F ( r )  = Fjrj 

In the zeroth-order approximation, the regularity of V ( r )  leads just to the quadratic algebraic 
self-consistency condition which fixes j o  = -1 and defines a pair of the eligible leading- 
order coefficients FLT) = e and F(-) -I  - - -e - 1. Recurrently, they would generate the 
two sequences of coefficients {$*)} and, subsequently, the pair of independent Y ( r ) ,  as 
they should. Vice versa, the physical (= regular) solutions (compatible with (10)) possess 
F-l = F:;) = -1 - 1, and we may discard the plus-superscripted solutions 5"' as 
redundant and unphysical. 

A parallel natural asymptotic series assumption based on (11) reads 

and implies the unique and physical G-I = p and Gk. 

3. An anharmonic oscillator illustration 

For each particular interaction V ( r ) ,  it remains for us to derive the proper form of 
F(r) = F~"'"'''~](r) from the available input 4 and Gk. Let us illustrate this procedure on 
a simple though non-trivial example 

V ~ , A . ~ ) ( X )  = p ~ ~ + A x ~ / ( l  + g x 2 )  g 0 (16) 

which seems extremely suitable for such a purpose. A phenomenological appeal makes the 
family of interactions (16) frequently encountered in the current literature (cf, for example, 
the extensive list in [4]). 

Our choice of method is, first of~all, dictated by its non-polynomiality (3). In accord 
with the preceding section, nonlinear recurrences 
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we may generate the explicit fo '= F-1 = -e - 1, fi = FI = E / ( Z  + 31, f 2  = 
[E2/(2e + 3)' - p2 - A] / (2 t  + 5 )  etc., Similarly, equation (15) implies the second set of 
recurrences 

- 

= 

k+l 

GnGk, - (k - 1)Gx-I + ( - E  + A/g)&.q + + 1) - ~/g21&.z 
n=-1 

,... (19) +A/g 3 & , 4 - . . . = Q  k=-1 ,0 ,1  

F(r )  x ~['l('O*)(r) = g o r  + C g m r - ( 2 m - l )  + 0 ( ~ - ( 2 J + l ) )  

with disappearing Go = G2 = . . . = 0. The shortened formula 
I 

(20) 

may, mutatis mutandis, be assigned with go = G-1 = p, gl =-~GI = (s - E + A/g)/Zp etc. 

3.1. Integration 

An overall requirement of compatibility of our universal Pad6 formula (6) with the particular 
regular expansion (18) and with its Jost-type counterpart (ZO), i.e. the respective prescriptions 

and 

constrain the full freedom of (6), 

m=I 

F('I.M21(r) FIKl(reguk)(r) + 0(rzK+') lrl < 1 (21) 

FlM'.M2'(r) = F['1('050(,) + 0(r-'u+19 l r l  >> 1 (22, 

Any denominator in such a function may be given the factorized form 

(24) 
a0 + a1 r2 + a2r4 + . . . + aN+1rZN+' 

c l r (1+gor2) (1+g l r2 ) . . . (1  +gN-lr2) 
&that we may generate and integrate the partial-fraction expansion 

FEW(,)  = 

where the coefficients ,9j = By1 read 
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etc. .As long as 01 = -e- 1 and y = f i ,  this defines the wavefunctions Y ( r )  non-numerically, 

(29) W(r )  = re+! exp (-7 P r') (1 +gorZ)h (1+ gl r2)~l  . . . (1 + gN-1 r 2 @"-I , 

At N = 0, the nodeless exact ground-state structure of the h = 0 harmonic oscillator is 
reproduced. At all the finite N < 00, the generalized elementary form of (29) makes the 
scheme attractive for variational purposes. We skip this idea here. 

3.2. Pad6 coeflcients 

3.2.1. One-point scheme. The explicit determination of coefficients in the fundamental 
equation (23) remains routine [9] .  At some fixed and finite K we rewite equation (21) as 
a set of K + 1 algebraic equations 

ax = fwbi + fk-ibz + ... + fobk+i k = 0,1,. . . , K (30) 
noting that UN+Z = a ~ + 3  = . . . = 0 and bN+2 = b ~ + 3  = . . . = 0. Without any additional 
requirements, we may already perfory a transition to (23) provided only that the number 
of new parameters remains the same, 2N + 2 = K + 1. Indeed, the first N + 2 lines of (30) 
form an explicit linear matrix definition of the numerator (coefficients ai), 

(31) ak =fib1 + fk-ibz + ... + fobk+l k = 0,1,. . . , N + 1 .  

The remaining N items 

- fkbi = fk-ibz f... + fk-NbN+I k = N -k 2 ,  N + 3 , .  . . ,2N + 1 (32) 
are another matrix-inversion definition of the N + 1 coefficients bj ,  one of which (say, 
bl 1) was chosen, in advance, as a normalization. 

3.2.2. Two-point scheme. After we complement equation (21) by its asymptotic-estimate 
counterpart (22) or, order-by-order in r ,  

aN+i-j=gjbN+L+gj-ibN+...+gObN+l-j j = O , l ,  ..., J (33) 

we may concatenate both the systems (30) and (33) and solve them as K + J + 2 non- 
homogeneous linear algebraic equations for the 2N + 2 unknown coefficients ai and bj. 
The resulting Pad6 formula (often called a two-point Pad6 approximant F"I(r)-cf the 
book [9] ,  p 100, for more details) with a normalization b, = 1 or bN+l = 1 may easily be 
constructed in the same routine manner as above. 

3.2.3. The simplified three-point scheme. In the N -+ 00 limit, Pad6 formulae for F(r) 
andlor Y(r) may develop a singularity near each pole of V(r). Knowing their positions 
(rpole = &i/& in our example), we may simulate the presence of a singularity in advance. 
In particular, postulating go g, i.e. 

at any finite N ,  we have just redefined the b, 

bi = C I  b z = g c i + c z ,  ... bN~=gCN-i+CN bN+i =gCN.  (35) 
The new (multi-point-here four- or rather threepoint) Pad6 formulae will only contain 
less unknown coefficients, 2N + 1 = K + ~ J  + 2. 
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4. Energies 

4.1. Secular equations 

Up to now, the physical bound-state energy E was a free parameter. In the spirit of 
the extrapolative philosophy of the Riccati-Pad6 method of [8] and/or of its interpolative 
modification [IO], we shall fix the energy via one more row 

(36) f K + I  = [ U K + I  . ( f ~ b z  + ... + f a b ~ + ~ ) l / b l  

added to equation (30) or, alternatively, via an additional item 

g J + l  = 1aN-J - @ f b N  f “ ’ f ~ o ~ N - J ) ] / ~ N + I  (37) 

written in the spirit of (33). 

4.1.1. J = -1  and the old one-point RPM extrapolation. Without any explicit information 
about asymptotics (i.e. after having fixed J = -1 in the above one- or two-point Pad6 
schemes), one retains the old elimination (31) of ij and complements the remaining N 
equations (30) for the N unknown (normalized) b j  by the additional equation (36). In 
the other words, we just convert the old non-homogeneous set of N equations into the 
homogeneous linear set of N + 1 equations. It possesses a non-trivial solution if and only 
if its secular determinant disappears, 

(38) 
N+1 

det IIfN+i-j+ZIIi,,=l = o  J = - 1 .  

More details may be found elsewhere [ S I .  

4.1.2. J 2 0 and the old two-point RPM interpolations. The energy-determining RPM 
incorporation of the oneline equation (36) or (37) may be re-interpreted as a one-unit 
increase of the integer K or J, respectively. With K + J = 2 N  + 1 in an extended two- 
point scheme, non-trivial combinations of equations (30) and (33) start at J = 0. With 
the same definition (31) of a j  as above, a sequence of the homogeneous linear sets of 
N + 1 equations for bj is obtained. The Toeplitz-determinant conditions of their non-trivial 
solvability remain similar to (38), 

f N + l  f N  .’’ f z  ( f l  - g o )  
... . . .  . . . . . .  ... = O  ~ J = O  (39) 
fW+l f 2 N  ’.’ f N + 2  f N + l  

f N  . ” ’  f z  ( f l  -go) ( f a  -a )  ... . . . . . . .  ... ... = O  J = 1  (40) 
f 2 N  ’.’ fN+Z f N + l  f N  

etc (cf [ I O ]  for more details). 

4.1.3. The new, three-point RPM secular equations. With the N + 1 two-point coefficients 
b j  replaced, in accord with equation (35), by the N three-point coefficients c ~ ,  we may fit 
the K + 1 plus J + 1 input coefficients fk and gk to the 2N + 1 output arbitrarily normalized 
Pad6 parameters ai and cj plus one energy E ,  i.e. K + J + 2 = 2N + 2.  After the same 



f N + Z  f g f N + 1  f N + 1  + S f N  '. ~~ . f 3  f gfZ 
f N + 3  + g f N + 2  f N + 2  + g f N + l  . '. f 4  + g f 3  

h N + l  + g h N  f Z N  + gfW-I ' '. f N + z  + g f N + l  

... ... . . . . . .  

f N + l  f g f N  f N  + g f N - l  " '  f z - k g ( f 1 - g o )  
f N + Z  ... f g f N + l  f N + l  ... + g f N  . . . . . .  ' ' ' f 3  f gf2 / = O  J = O  (42) 

= O  J = - I  (41) 

(44) 
Let us notice that the dimensions of determinants are smaller, namely, now equal to N .  

4.2. Variable matching J as a new methodicalfreedom 

For the simplest numerical illustration of efficiency of the old as well as new RPM schemes 
we restricted our attention just to the single set of couplings p = 1, A = 1 and g = 1 .  The 
results presented in table 1 indicate the quick growth of precision with the growing sum of 
weights K and J of the respective threshold and asympotic input information. 

One may notice that the exact numerical values of energies (Eemct = 1,232350723 for 
the ground state [IS], etc) seem bracketed by their separate RPM estimates at different J .  

Table 1. ' h e  OPM convergence of the WO- and three-point ground-state energies, ( E  - x 
108. 

Dimension = 4 Dimension = 6 

Two-point ( N  = 3) Three-point (N = 4) Two-point (N = 5 )  Three-point ( N  = 6) 
J K + J = 7  K + J = 8  K + J = l l  K + J = 1 2  

0 -325 -84 -7 -2 
1 +3?4 +82 +7 +2 
2 -432 -97 -6 -2 
3 17189 +145 +9 +3 
4 -1554 -269 - -4 
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Table 2. 3-independence of the col~ect ml roots. 

Energies: Spurious Physical Spurious 
Roots: 

K 3 N Leftneighbour Correct Right neighbour 

2 0 2 4 . 2  1.193 m 
1 1  I - m  1.333 m 
0 2 2 - m  ' (1.0) M 

3 0 4 -1.75 1.227 (3.3) 
2 I 3 0.25 1.241 6.51 
1 2 3 - 0 0  1.20 (3.9) 
0 3 4 - 0 0  1.47 (2.5) 
4 0 6 -1.4 1.2313 1.61 
3 1 4 0.95 1.2340 5.78 
2 2 4 -9.5 1.2285 1.87 
1 3 4 - m  1.249 2.18 
0 4 6 -3.8 0.87 (2.4) 
5 0 9 -0.9 ' 1.23215 1.30 
4 1 7 1.18 1.23261 5.62 
3 2 6 -0.66 1.231 87 1.31 
2 3 6 1.01 1.2337 0.1) 
1 4 7 - 0 0  1.226 2.24 
0 5 9 - m  1.32 (2.4) 

If confirmed by further numerical andor analytic work, the latter bracketing phenomenon 
might facilitate a standard numerical acceleration of convergence 1191. 

The precision seems to remain the same or comparable for (at least the first few) different 
J at a fixed N .  The use of the large J > N should be discouraged, in full accord with our 
older experience [lo]. 

At the smallest dimensions (cf table 2), the identification of the unique physical energy 
root is not difficult once it proceeds, in agreement with the standard RPM recommendations, 
via the tentative N-independence criterion (cf also [ U ] ) .  Indeed, the total number of roots 
(denoted here as N = N(K, J ) )  is still very small. The closest left and right neighbours 
of the correct energy root remain strongly N-dependent (if applicable, we listed a real part 
of the closest complex root in parentheses, indicating its auxiliary character). 

In accord with tables 1 and 2, an overall pattern of the K + J + OQ convergence seems 
uninfluenced by technical differences between our old (two-point) and new (threepoint) 
RPM schemes. Even at a fixed N ,  the precision remains controlled solely by the amount 
of the input information K + J itself, remaining almost constant at several different J. It 
is only of marginal technical interest to notice that, in fact, the new three-point scheme 
(characterized by the even if + J )  is slightly more efficient (than its two-point alternative 
with odd if + J) as it works with matrices of slightly smaller dimension. 

What is more exciting is the observation that at a (still comparatively small) dimension 6,  
table 1 already offers approximately eight correct significant digits in the ground-state 
energy. In accord with table 3. the precision of the excited-state energies also decreases 
much less than you would expect in the light of the smallness of the dimension. The last 
row offers'the best estimates provided by the simple J-averaging which, for example, leads 
to the nine-digit precision in the resulting ground-state energy. 
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Table 3. The RPM specr” a1 K + I = I 1  

Ground s1a1e The second exciiation The f o d  excitation 
3 E - 1.232350 E - 5.5897 E - 9.68 

0 0.651 x 0.695 x 0.191 x 10-2 
1 0.788 x 0.847 x 0.489 x 
2 0.655 x 0.745 x IO@ 0.362 x 
3 0.811 x 10-6 0.831 x 0.430 x 

Average 0.726 x 0.780 x 0.368 x 

Table 4. Spurious roots a1 K + J = 11. 

Ground stale The second excited state 

rpvtiovr Iputimr 
J E:.? - E c m  Etich, - E C ~ C ,  E::Pvr - Euaa Enchr - E,,,, 

0 -0.07 +O.OOO 03 ~ ~ (-1.9) t0.008 
I -0.00002 +0.003 -0.003 (t2.1) 
2 -0.02 +o.ooo 02 -0.5 +o.wz 
3 -0.00002 +O.O02 -0.001 +0.2 

4.3. Spurious roots at large N 

At a fixed level of precision, the necessary RPM secular matrix dimensions are, purely 
empirically, much smaller than in the other methods available in the current literature 
[4,18]. Hence, RPM may seem suitable for high-precision computations. Unfortunately, 
its current versions cannot be considered absolutely superior in this area. The reason lies 
in the observation that the growth of N leads to an accumulation of many spurious roots 
near the exact one. This makes the standard numerical RPM high-precision algorithms 
ambiguous 1121. 

The free variability of J seems to bring a new hope. Indeed, besides the expected N -  
oscillations, table 2 also indicates the presence of a strong oscillatory J-dependence of all 
the spurious solutions. In comparison, correct roots only exhibited a much less pronounced 
J-dependence. A simpler and more straightforward rule and criterion of optimality may be 
conjectured discard all the roots which oscillate too quickly with the change of J. 

At higher N ,  our conjecture is, for the present particular example at least, well confirmed 
by our final table 4 empirically. Its large O(lO-’) oscillations of spurious ground states 
contrast sharply with the strongly suppressed O(IO-’) oscillations of the correct roots 
(explicitly, the differences EFEi; naxi - also appear in the third column of table 1). 
Similar observation concerns also the excited states (compare with table 3). Hence, on the 
basis of our tests, we may recommend a combined variation of N and J as a source of 
reliability in the practical high-precision computations. 

5. Summary 

Our present methodical conjecture was inspired by an observation that exponential ansgtze 
play a non-negligible role in the complicated realistic many-body calculations [20]. In 
the present, not entirely unrelated RPM context, bound states also seem surprisingly 
well represented by the similar inhire-product-like wavefunctions: their approximate 
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wavefunctions possess a non-standard, .though still elementary and transparent, closed 
form. 

Our main attention was paid to a pa&cular anharmonic oscillator example. This 
restriction was motivated independently by the popul&ty and use of this model in the 
theory of lasers, chemistry, field theory as well as in perturbation theory and in some further, 
purely methodical analyses (cf [4] which contains an extensive list of further references). 
Our results on this ‘ill-behaved force’ support the current expectations that the efficiency 
of the universal Riccati-Pad6 strategy may prove, to a large extent at least, independent of 
the detailed structure of V ( r ) .  

In the older RPM studies, the underlying Pad&-type rearrangement of Riccatian 
wavefunctions has led to several unsettling methodical challenges: 

With the poor quality of the input information (exemplified here by the expansion of 
F(r)  which diverges beyond the finite radius rCmax) = l/,&), a suspicion might be raised 
as to the reliability of the high-precision results. 

Among all the increasingly many-energy roots (which accumulate closer and closer to the 
correct physical energy), the choice of correct approximants is more and more ambiguous 
at higher N .  

In our paper we nied to avoid both these inconsistencies. We found that the first problem 
finds a natural solution in the consequent transition to the multi-point Pad6 interpolation. We 
have shown that such a formal tool enables us to compactify all the available information 
about the position of (complex) singularities. 

We have found that the new, characteristic J dependence of the energy roots is of 
fundamental importance and that its destabilization-of-spuriosities effect might become a 
key to the final resolution of the second puzzle. 

On the basis of our numerical tests, we may preliminarily conclude that in spite of the 
fact that only the limit N + 00 defines the exact wavefunctions and energies, the very first 
N = o(1) prescriptions may already supply several significant digits correctly. 
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